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Electronic properties of Ge–Si nanoparticles
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Abstract. Using a parameterized density-functional tight-binding method we have calculated the electronic
and structural properties of Ge–Si nanoparticles. Starting with a spherical part of a zinc-blende/diamond
crystal (with the center of the sphere at the mid-point of a nearest-neighbour bond) we have constructed
initial structures that subsequently were allowed to relax. Structures consisting solely of Ge atoms or
solely of Si atoms were studied, together with core-shell structures for which one semiconductor forms a
shell on the core of the other semiconductor. Moreover, homogeneous, ordered SiGe structures as well as
structures with a semisphere of one semiconductor and a semisphere of the other were also considered. In
analysing the results special emphasis is put on identifying particularly stable structures, on explaining
the occurrence of those, on the spatial distribution of the frontier orbitals, and on the variation of the total
energy with structure and composition.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 73.22.-f Electronic structure of nanoscale
materials: clusters, nanoparticles, nanotubes, and nanocrystals

1 Introduction

Band-structure engineering, i.e., the tuning of the elec-
tronic properties of materials through modification of the
structure and stoichiometry of semiconducting structures,
is an important component of the design of special materi-
als for special purposes. During the last couple of decades
another parameter has been added to those that can be
varied in order to modify the materials properties, i.e.,
‘dimensionality’ or ‘size’. It has been found that materials
that can be characterized as being quasi-zero-, one-, or
two-dimensional have properties that differ from those of
the macroscopic counterparts. For semiconductors, quasi-
zero-, one-, and two-dimensional materials are those for
which the typical exciton radii are comparable with the
spatial extensions of the materials in all, two, or one di-
mensions. Then, the spatial confinement leads to modified
materials properties.

The materials that fall into these categories are clus-
ters, nanowires, and sheets. However, for the typical
semiconductors like Si, Ge, GaAs, CdS, InP, . . . the in-
teratomic bonds are defined through covalent bonds be-
tween nearest neighbours. The covalent bonds are to a
large extent formed by sp3 hybrids on the various atoms.
From these directional hybrid orbitals, extended three-
dimensional periodic structures like the wurtzite and the
zincblende structure can be generated. Therefore, when
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quasi-zero-, one-, or two-dimensional structures are con-
sidered, the periodicity is interrupted in one or more di-
mensions, and dangling bonds on the surface occur. The
dangling bonds are highly reactive and, therefore, in order
to stabilize these systems one has to saturate those, e.g.,
by adding ligands.

Another way of stabilizing the finite systems is to cover
the core of one semiconductor with another semiconduc-
tor. For quasi-zero-dimensional systems this leads to core-
shell nanoparticles, where we for quasi-one-dimensional
systems arrive at core-sheath nanowires.

Two of the technologically most important semicon-
ductors are silicon and germanium. For those, experi-
mental realizations of core-shell- or core-sheath-like struc-
tures have been reported [1–3]. In order to understand in
more details the interplay between the two semiconductors
forming an interphase we have performed a set of theo-
retical calculations on Si–Ge nanoparticles. We have con-
sidered both (Si)Ge and (Ge)Si core-shell systems [with
(A)B denoting an A-B core-shell nanoparticle] as well as
nanoparticles containing two half-parts, Ge|Si, each con-
taining one of the two semiconductors and, finally, mixed
GeSi nanoalloys. The purpose of the present work is to
describe briefly some of the main outcomes of this study.

2 Computational method

The calculations of the electronic properties for a
given structure were performed using the parameterized
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tight-binding density-functional method of Seifert
et al. [4–6]. According to this method, the relative total
energy of a given compound with a chosen structure is
written as the difference in the orbital energies of the
compound minus those of the isolated atoms, i.e., as

Ee =
∑

i

εi −
∑

m

∑

i

εmi (1)

(with m being an atom index and i an orbital index),
augmented with pair potentials,

Er =
∑

m1 �=m2

Um1,m2(|Rm1 − Rm2 |) (2)

(with Rm being the position of the mth atom).
In calculating the orbital energies we need the Hamil-

ton matrix elements 〈χm1n1 |Ĥ |χm2n2〉 and the overlap
matrix elements 〈χm1n1 |χm2n2〉. χmn is the nth atomic
orbital of the mth atom. The Hamilton operator contains
the kinetic-energy operator as well as the potential. The
latter is approximated as a superposition of the potentials
of the isolated atoms,

V (r) =
∑

m

Vm(|r − Rm|), (3)

and we assume that the matrix element 〈χm1n1 |Vm|χm2n2〉
vanishes unless at least one of the atoms m1 and m2 equals
m. The pair potentials Um1,m2 are obtained by requiring
that the total-energy curves from parameter-free density-
functional calculations on the diatomics are accurately re-
produced. With these approximations all relevant infor-
mation on the above-mentioned matrix elements can be
extracted from calculations on isolated two-atomic sys-
tems, in our case on Si2, SiGe, and Ge2. Finally, only the
3s and 3p electrons of Si and the 4s and 4p electrons of
Ge were explicitly included in the calculations, whereas
all other electrons were treated with a frozen-core approx-
imation.

Since we are applying the method on larger systems,
we examined its accuracy for infinite, periodic, crystalline
systems and found optimized lattice constants within less
than 1% of the experimental values. Although the clusters
of the present study are neither diatomic molecules, nor
infinite crystals, our experience on related systems gives
us confidence in using the approach also for the finite-sized
nanoparticles.

The structures of the present study were constructed
by considering a spherical cut-out of the diamond crystal
structure with the center of the sphere at the center of a
nearest-neighbour bond. Thereby, concentric atomic shells
with 2, 6, 12, 12, 6, 18, 12, 30, 14, 36, 24, . . . atoms are
obtained, resulting in particles with 2, 8, 20, 32, 38, 56,
74, 86, 116, 130, 166, 190, . . . atoms. For the (A)B core-
shell systems an inner set of atomic shells were occupied
by A atoms and the outer part by B atoms. A special case
is the pure Si and Ge clusters for which the core contains
no atomic shells. For the Ge|Si systems a plane containing
the center of the system splits it into a Si and a Ge part.

Finally, for the GeSi nanoalloys, the atomic positions were
occupied alternatingly by Si and Ge atoms.

After having constructed the initial structure (using a
lattice constant that is the average of those of crystalline
Si and Ge), it was allowed to relax to its closest total-
energy minimum.

3 Results

In total we considered 95 different structures, each consist-
ing of NSi,i Si atoms and NGe,i Ge atoms, i = 1, 2, . . . , 95.
Using a least-squares fit we approximated the binding en-
ergy of those 95 structures by a sum of atomic energies,

Eb,i � ESiNSi,i + EGeNGe,i ≡ Ẽb,i. (4)

Subsequently, we defined one stability energy for each clus-
ter,

∆E1 = Eb,i − Ẽb,i (5)

which is the more negative the more stable the cluster is.
Finally, we analyse this quantity per atom, i.e.,

∆E1/N = ∆E1/(NSi,i + NGe,i). (6)

We also considered the stability energy

∆E2/N = Et,i/(NSi,i + NGe,i) (7)

with Et = Ee + Er of equations (1) and (2).
From the fit of equation (4) we found ESi = −2.37 eV

and EGe = −3.58 eV. That EGe is more negative than
ESi implies that it is energetically more favorable for Ge
atoms than for Si atoms to be incorporated into those
nanostructures. On the other hand, the cohesive energy
of the solids equals 4.63 and 3.85 eV/atom for Si and Ge,
respectively [7].

The negative values of ESi and EGe imply that ∆E2/N
in general is lower than ∆E1/N . This is recognizable in
Figure 1, where we show these quantities as a function of
the number of atomic shell, either in the shell region or
in the complete system. The values in Figures 1a and 1b
are in general lower than those of the other panels, which
first of all can be explained through the negative values of
ESi and EGe. An additional effect is due to the lower sur-
face energy of Ge compared with Si, meaning that naked
(Si)Ge particles in general are stabler than the (Ge)Si
counterparts.

The presentation in Figure 1 shows that for (Si)Ge
core-shell clusters ∆E1/N and for (Ge)Si core-shell clus-
ters ∆E2/N first of all depends on the number of atomic
shells in the shell region. Other representations of these en-
ergies show a much less clear correlation between size and
stability. Moreover, Figure 1 shows that the homogeneous
GeSi alloys are stabler than the Ge|Si systems. Finally,
for all systems of Figure 1 the relative total energy is an
overall decreasing function of size of the systems.

In an earlier work we have found a close relation be-
tween stability (i.e., ∆E/N) and the energy gap between
the HOMO and the LUMO [8]. For the present systems we
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Fig. 1. The variation in the stability energies per atom ∆E1/N
and ∆E2/N as a function of the number of atomic shells for
the different systems, as indicated in the panels. Ns is the total
number of atomic shells in (e) and (f), whereas it is the number
of atomic shells in the shell region in the other panels. Finally,
the lines in (a)–(d) connect the values for the systems with the
same number of atomic shells in the core region.

do, however, not find a similar correlation. Figure 2 shows
one example of this, i.e., the gap vs. ∆E2/N , but also for
the gap vs. ∆E1/N , no such correlation is observed.

In order to study the charge distribution of the clus-
ters, we first determine the center of the cluster with n Si
atoms and m Ge atoms,

R0 =
1

n + m

n+m∑

j=1

Rj , (8)

and, subsequently, for each atom its so-called radial dis-
tance

rj = |Rj − R0|. (9)
Subsequently, we plot the Mulliken gross populations of
the individual atoms as a function of the radial distance.
Figure 3 shows some few examples of those results that
are found for all the systems of the present study: in the
outermost parts the atomic populations are much more
scattered compared to the inner parts, with both nega-
tively and positively charged Si and Ge atoms. On the
other hand, in the inner parts there is a tendency for an
electron transfer from Ge to Si. Ge-Si nanowires with a
Si sheath covering a Ge core have been of some interest
recently (see, e.g., [9]), also as active components in semi-
conductor devices. In these, it is assumed that a hole gas

Fig. 2. The HOMO-LUMO energy gap as a function of the
stability energy per atom ∆E2/N for (a, b) the core-shell sys-
tems with (a) Ge covering Si and (b) Si covering Ge as well
as for (d) the homogeneous GeSi systems and (c) the Ge|Si
systems.

is formed in the Ge wire. If the systems were isolated, this
would imply a net electron transfer from Ge to Si, which
is in excellent agreement with the findings of the present
study.

Finally, we shall study the frontier orbitals. For optical
properties, excitons are believed to play a crucial role and
these can in turn to a good approximation be described
with the HOMO and LUMO single-particle wavefunctions.
Therefore, the spatial distribution of these orbitals is im-
portant. To this end we construct for any orbital the den-
sity

ρi(r) =
∑

j

Nij

(
2α

π

)3/2

exp[−α(r − Rj)2]. (10)

Here, Nij is the Mulliken gross population for the jth atom
and ith orbital, and α is chosen ‘reasonably’, so that il-
lustrative figures result upon spherical averaging. Typical
results are represented in Figure 4, where it is seen that in
all cases the frontier orbitals are localized to the surface re-
gions of the nanoparticles. Actually, with no exception this
result was found for all the systems of the present study.
I.e., in contrast to our findings for certain CdSe-CdS and
CdS-CdSe core-shell particles [10] (that the HOMO and
the LUMO was localized to different parts of the system),
our results do not suggest a charge separation upon exci-
tation.

4 Conclusions

We have presented results of a theoretical study of the
electronic properties of roughly spherical nanoparticles
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Fig. 3. Radial distribution of Mulliken gross popula-
tions of valence electrons of Si (+) and Ge (×) for (up-
per part) homogeneous GeSi systems and (lower part)
Ge|Si systems with (left part) 56 and (right part) 134
atoms. The horizontal solid line marks the value (4) for
neutral Si and Ge atoms.

Fig. 4. Schematic presentation of the radial elec-
tron distribution of the HOMO (curves pointing
upward) and the LUMO (curves pointing down-
ward) for different systems with 190 atoms, i.e.,
(a) (Si56)Ge134 and (b) (Ge56)Si134 core-shell par-
ticles, (c) the homogeneous GeSi nanoalloy, and
(d) the Ge|Si system.

containing both Si and Ge atoms. We considered various
arrangements of the atoms, i.e., a core of one element cov-
ered by a shell of the other, systems with two half-spheres
each with one element, and homogeneous nanoalloys. No
attempt to optimize the structure completely was under-
taken.

We found that the stability of the core-shell nanoparti-
cles to a good approximation was dictated by the number
of atomic shells in the shell region. This may be related
to our finding that the frontier orbitals were localized to
the surface regions, and, consequently, the HOMO-LUMO
gap was a fairly irregular function of size of the system.

(Si)Ge systems were in general more stable than (Ge)Si
ones, and homogeneous GeSi systems more stable than
Ge|Si ones.

In the inner parts we observe an electron transfer from
Ge to Si, whereas the outermost parts of the clusters, irre-
spectively of the system, show an increased electron trans-
fer between the atoms.

This work was support by the German Research Council
(DFG) through project no. Sp 439/11.
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Magalháes-Paniago, T.I. Kamins, R. Stanley Williams,
Phys. Rev. Lett. 91, 176101 (2003)

3. A. Kolobov, H. Oyanagi, N. Usami, S. Tokumitsu, T.
Hattori, S. Yamasaki, K. Tanaka, S. Othake, Y. Shiraki,
Appl. Phys. Lett. 80, 488 (2002)

4. D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert, R.
Kaschner, Phys. Rev. B 51, 12947 (1995)

5. G. Seifert, R. Schmidt, New J. Chem. 16, 1145 (1992)
6. G. Seifert, D. Porezag, Th. Frauenheim, Int. J. Quant.

Chem. 58, 185 (1996)
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